Digitial Image Processing with Java and ImageJ : English edition update

Previous Topic Next Topic
 
classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

Digitial Image Processing with Java and ImageJ : English edition update

Mark Burge
The English edition of our German textbook "Digital Image Processing
with Java and ImageJ" will be available in eary 2006.  It is scheduled
to go to press in April.  I'm attaching the table of contents and you
can find additional information as well as text resources at
http://imagingbook.com/.

Thank you,

Dr. Wilhelm Burger and Dr. Mark Burge

>Von: ImageJ Interest Group im Auftrag von michael shaffer
>Gesendet: Fr 28.10.2005 18:15
>An: [hidden email]
>Betreff: Re: Book sugestion

>Is there any word yet regarding "Digitale Bildverarbeitung - Eine Einführung
>mit Java und ImageJ" (Wilhelm Burger, & Mark J. Burge) and its translation
>to English?

1  Crunching Pixels
    1.1  Programming with Images
    1.2  Image Analysis and "Intelligent" Processing
2  Digital Images
    2.1  Types of Digital Images
    2.2  Image Acquisition
        2.2.1  The Pinhole Camera Model
        2.2.2  The "Thin" Lens
        2.2.3  Going Digital
        2.2.4  Image Size and Resolution
        2.2.5  Image Coordinate System
        2.2.6  Pixel Values
    2.3  Image File Formats
        2.3.1  Raster vs. Vector Images
        2.3.2  Tagged Image File Format (TIFF)
        2.3.3  Graphics Interchange Format (GIF)
        2.3.4  Portable Network Graphics (PNG)
        2.3.5  JPEG
        2.3.6  Windows Bitmap (BMP)
        2.3.7  Portable Bitmap Format (PBM)
        2.3.8  Additional File Formats
        2.3.9  Bits and Bytes
    2.4  Exercises
3  ImageJ
    3.1  Software for Digital Images
        3.1.1  Software for Image Manipulation
        3.1.2  Software for Image Processing
    3.2  Properties of ImageJ
        3.2.1  Features
        3.2.2  Available Tools
        3.2.3  ImageJ Plugins
        3.2.4  An Example Plugin "inverter"
    3.3  Additional Information about ImageJ and Java
        3.3.1  ImageJ Resources
        3.3.2  Programming with Java
    3.4  Exercises
4  Histograms
    4.1  What is a Histogram?
    4.2  What can be discovered from a Histogram?
        4.2.1  Brightness, Contrast, and Dynamic Range
        4.2.2  Image Defects
    4.3  Computing the Histogram
    4.4  Histograms for Images with more than 8 bits
        4.4.1  Binning
        4.4.2  Example
        4.4.3  Implementation
    4.5  Histograms of Color Images
        4.5.1  Intensity Histogram
        4.5.2  Histogram of Individual Color Channels
        4.5.3  Combined Color Histogram
    4.6  Cumulative Histogram
    4.7  Exercises
5  Point Operations
    5.1  Changing Pixel Intensity
        5.1.1  Contrast and Brightness
        5.1.2  Clamping
        5.1.3  Automatic Contrast Enhancement
        5.1.4  Inverting Images
        5.1.5  Thresholding
        5.1.6  Point Operations and Histograms
    5.2  Linear Histogram Equalization
        5.2.1  Histogram Specification
    5.3  Gamma Correction
        5.3.1  Why Gamma?
        5.3.2  The Gamma Function
        5.3.3  Real Gamma Values
        5.3.4  Applying Gamma Correction
        5.3.5  Implementation
        5.3.6  Gamma Function with Offset
    5.4  Point Operations in ImageJ
        5.4.1  Point Operations with Look-up Tables
        5.4.2  Standard Arithmetic Operations
        5.4.3  Point Operations with Multiple Images
        5.4.4  ImageJ Plugins for Multiple Images
    5.5  Exercises
6  Filters
    6.1  What is a Filter?
    6.2  Linear Filters
        6.2.1  The Filter Matrix
        6.2.2  Using Filters
        6.2.3  Computing Filter Operations
        6.2.4  Filter Plugin Example
        6.2.5  Integer Coefficients
        6.2.6  Arbitrary Size Filters
        6.2.7  Types of Linear Filters
    6.3  Formal Properties of Linear Filters
        6.3.1  Linear Convolution
        6.3.2  Properties of Linear Convolution
        6.3.3  Separability of Filters
        6.3.4  Impulse Response
    6.4  Non-linear Filters
        6.4.1  Minimum- and Maximum-Filter
        6.4.2  Median Filter
        6.4.3  The Weighted Median Filter
        6.4.4  Additional Non-linear Filters
    6.5  Filter Implementation
        6.5.1  Efficiency of Filter Programs
        6.5.2  Handling Image Borders
    6.6  Filter Operations in ImageJ
        6.6.1  Linear Filters
        6.6.2  Gaussian Filters
        6.6.3  Non-linear Filters
    6.7  Exercises
7  Edges and Contours
    7.1  How do Edges Arise
    7.2  Gradient Based Edge Detection
        7.2.1  Partial Derivatives and the Gradient
        7.2.2  Derivative Filters
    7.3  Filters for Edge Detection
        7.3.1  Prewitt and Sobel Operators
        7.3.2  Roberts Operator
        7.3.3  Compass Operators
        7.3.4  Edge Operators in ImageJ
    7.4  Additional Edge Operators
        7.4.1  Edge Detection with Second Derivatives
        7.4.2  Edges at Different Scales
        7.4.3  Canny Filter
    7.5  From Edges to Contours
        7.5.1  Contour Following
        7.5.2  Edge Images
    7.6  Edge Enhancement
        7.6.1  Edge Enhancement using the Laplace Filter
        7.6.2  Unsharp Masking
    7.7  Exercises
8  Finding Points of Interest
    8.1  Points of Interest
    8.2  Harris Corner Detector
        8.2.1  Local Structure Matrix
        8.2.2  Corner Response Function (CRF)
        8.2.3  Determining Corner Points
        8.2.4  Example
    8.3  Implementation
        8.3.1  Step 1 - Computing the Corner Response Function
        8.3.2  Step 2 - Determining the Corner Points
        8.3.3  Displaying the Corner Points
        8.3.4  Summary
    8.4  Exercises
9  Detecting Simple Curves
    9.1  Salient Structures
    9.2  Hough Transform
        9.2.1  Parameter Spaces
        9.2.2  Accumulator Array
        9.2.3  A Better Representation for Lines
    9.3  Implementing the Hough Transform
        9.3.1  Filling the Accumulator Array
        9.3.2  Analyzing the Accumulator Array
        9.3.3  Extensions to the Hough Transform
    9.4  Hough Transforms for Circles and Ellipses
        9.4.1  Circles and Arcs
        9.4.2  Ellipses
    9.5  Exercises
10  Morphological Filters
    10.1  Shrinking and Growing
        10.1.1  Image Neighborhoods
    10.2  Basic Morphological Operations
        10.2.1  The Structuring Element
        10.2.2  Point Sets
        10.2.3  Dilation
        10.2.4  Erosion
        10.2.5  Properties of Dilation and Erosion
        10.2.6  Design of Morphological Filters
        10.2.7  Example Usage: Outlining
    10.3  Composite Operations
        10.3.1  Opening
        10.3.2  Closing
        10.3.3  Properties of Opening and Closing
    10.4  Morphological Filters for Grayscale and Color Images
        10.4.1  Structuring Elements
        10.4.2  Grayscale Dilation and Erosion
        10.4.3  Grayscale Opening and Closing
    10.5  Implementing Morphological Filters
        10.5.1  Binary Images in ImageJ
        10.5.2  Dilation and Erosion
        10.5.3  Opening and Closing
        10.5.4  Outlining
        10.5.5  Morphological Operations in ImageJ
    10.6  Exercises
11  Regions in Binary Images
    11.1  Finding Image Regions
        11.1.1  Region Marking with Flood Filling
        11.1.2  Sequential Region Marking
        11.1.3  Region Marking - Summary
    11.2  Region Contours
        11.2.1  Internal and External Contours
        11.2.2  Combining Region Marking and Contour Finding
        11.2.3  Implementation
        11.2.4  Example
    11.3  Representing Image Regions
        11.3.1  Matrix Representation
        11.3.2  Run Length Encoding
        11.3.3  Chain Codes
    11.4  Properties of Binary Regions
        11.4.1  Shape Features
        11.4.2  Geometric Properties
        11.4.3  Statistical Shape Properties
        11.4.4  Moment Based Geometrical Properties
        11.4.5  Projections
        11.4.6  Topological Properties
    11.5  Exercises
12  Color Images
    12.1  RGB Color Images
        12.1.1  Organization of Color Images
        12.1.2  Color Images in ImageJ
    12.2  Color Spaces and Color Conversion
        12.2.1  Conversion to Grayscale
        12.2.2  Color Image De-saturation
        12.2.3  HSV/HSB and HLS Color Spaces
        12.2.4  TV Component Color Spaces - YUV, YIQ, YCbCr
        12.2.5  Color Space for Printing - CMY and CMYK
    12.3  Colorimetric Color Spaces
        12.3.1  CIE Color Space
        12.3.2  CIE L*a*b*
        12.3.3  sRGB
        12.3.4  Adobe RGB
        12.3.5  Colors and Color Spaces in Java
    12.4  Color Image Statistics
        12.4.1  How many Colors are in an Image?
        12.4.2  Histograms
    12.5  Color Quantization
        12.5.1  Scalar Color Quantization
        12.5.2  Vector Quantization
    12.6  Exercises
13  Introduction to Spectral Techniques
    13.1  The Fourier Transform
        13.1.1  Sine and Cosine Functions
        13.1.2  Representing Periodic Functions with Fourier Series
        13.1.3  The Fourier Transform
        13.1.4  Fourier Transform Pairs
        13.1.5  Important Properties of the Fourier Transform
    13.2  Transition to Discrete Data
        13.2.1  Sampling
        13.2.2  Discrete and Periodic Functions
    13.3  The Discrete Fourier Transform (DFT)
        13.3.1  Definition of the DFT
        13.3.2  Discrete Basis Functions
        13.3.3  Yet Again Aliasing!
        13.3.4  Units in Spatial and Spectral Spaces
        13.3.5  The Power Spectrum
    13.4  Implementation of the DFT
        13.4.1  Direct Implementation
        13.4.2  Fast Fourier Transform (FFT)
    13.5  Exercises
14  The Discrete Fourier Transform in 2D
    14.1  Definition of the 2D DFT
        14.1.1  2D Basis Functions
        14.1.2  Implementing the 2D DFT
    14.2  Representing the Fourier Transform in 2D
        14.2.1  Range of Values
        14.2.2  Centered Representation
    14.3  Frequency and Orientation in 2D
        14.3.1  Effective Frequency
        14.3.2  Frequency Limits and Aliasing in 2D
        14.3.3  Orientation
        14.3.4  Geometric Correction of the 2D Spectrum
        14.3.5  Effects of Periodicity
        14.3.6  Windowing
        14.3.7  Windowing Functions
    14.4  2D Fourier Transform Examples
    14.5  Properties of the DFT
        14.5.1  Linear Filter Operations in the Spectral Domain
        14.5.2  Linear Convolution and Correlation
        14.5.3  Inverse Filters
    14.6  Exercises
15  The Discrete Cosine Transform (DCT)
    15.1  One Dimensional DCT
        15.1.1  DCT Basis Functions
        15.1.2  Implementing the One Dimensional DCT
    15.2  Two Dimensional DCT
        15.2.1  Separability
        15.2.2  Example
    15.3  Additional Spectral Transformations
    15.4  Exercises
16  Geometrical Image Operations
    16.1  Coordinate Transformations in 2D
        16.1.1  Simple Transformations
        16.1.2  Homogeneous Coordinates
        16.1.3  Affine Transformations (Three Point Transformations)
        16.1.4  Projective Transformations (Four Point Transformations)
        16.1.5  Bilinear Transformations
        16.1.6  Additional Non-Linear Image Deformations
    16.2  Re-Sampling
        16.2.1  Source-to-Target Mapping
        16.2.2  Target-to-Source Mapping
    16.3  Interpolation
        16.3.1  Simple Interpolation Methods
        16.3.2  Ideal Interpolation
        16.3.3  Interpolation Using Convolution
        16.3.4  Cubic Interpolation
        16.3.5  Interpolation in 2D
        16.3.6  Aliasing
    16.4  Java Implementation
        16.4.1  Geometrical Transformations
        16.4.2  Pixel Interpolation
        16.4.3  Usage Example
    16.5  Exercises
17  Image Comparison
    17.1  Template Matching in Intensity Images
        17.1.1  Distance between Image Patterns
        17.1.2  Dealing with Rotation and Scale Changes
        17.1.3  Implementation
    17.2  Comparison of Binary Images
        17.2.1  Direct Comparison of Binary Images
        17.2.2  The Distance Transform
        17.2.3  Chamfer Matching
    17.3  Exercises
A  Mathematical Notation
    A.1  Often Used Symbols
    A.2  Complex Numbers \@mathbb C
    A.3  Algorithmic Complexity and O Notation
B  Java Notes
    B.1  Arithmetic
        B.1.1  Integer Division
        B.1.2  Modulus Operator
        B.1.3  Unsigned Bytes
        B.1.4  Mathematical Functions (Math-Class)
        B.1.5  Rounding
        B.1.6  Inverse Tangent Function
        B.1.7  Float and Double (Classes)
    B.2  Arrays in Java
        B.2.1  Creating Arrays
        B.2.2  Size of Arrays
        B.2.3  Access to Array Elements
        B.2.4  Two Dimensional Arrays
C  ImageJ Short Reference
    C.1  Installation and Setup
    C.2  ImageJ API
        C.2.1  Images (Package ij)
        C.2.2  Image Processing (Package ij.process)
        C.2.3  Plugins (Packages ij.plugin, ij.plugin.filter)
        C.2.4  GUI Classes (Package ij.gui)
        C.2.5  Window Management (Package ij)
        C.2.6  Utility Classes (Package ij)
        C.2.7  Input-Output (Package ij.io)
    C.3  Image and Image Stacks Creation
        C.3.1  ImagePlus (Class)
        C.3.2  ImageStack (Class)
        C.3.3  NewImage (Class)
        C.3.4  ImageProcessor (Class)
    C.4  Image Processor Creation
        C.4.1  ImageProcessor (Class)
        C.4.2  ByteProcessor (Class)
        C.4.3  ColorProcessor (Class)
        C.4.4  FloatProcessor (Class)
        C.4.5  ShortProcessor (Class)
    C.5  Image Parameters
        C.5.1  ImageProcessor (Class)
    C.6  Accessing Pixels
        C.6.1  ImageProcessor (Class)
    C.7  Converting from Images
        C.7.1  ImageProcessor (Class)
        C.7.2  ImagePlus, ImageConverter (Classes)
    C.8  Histogram and Image Statistics
        C.8.1  ImageProcessor (Class)
    C.9  Point Operations
        C.9.1  ImageProcessor (Class)
        C.9.2  Blitter (Interface)
    C.10  Filter
        C.10.1  ImageProcessor (Class)
    C.11  Geometrical Operations
        C.11.1  ImageProcessor (Class)
    C.12  Graphical Operations on Images
        C.12.1  ImageProcessor (Class)
    C.13  Displaying Images
        C.13.1  ImagePlus (Class)
    C.14  Image Stack Operations
        C.14.1  ImagePlus (Class)
        C.14.2  ImageStack (Class)
        C.14.3  Stack Example
    C.15  Region of Interest (ROI)
        C.15.1  ImageProcessor (Class)
        C.15.2  ImageStack (Class)
        C.15.3  ImagePlus (Class)
        C.15.4  Roi, Line, OvalRoi, PolygonRoi (Classes)
    C.16  Image Properties
        C.16.1  ImagePlus (Class)
    C.17  Interaction
        C.17.1  IJ (Class)
        C.17.2  ImageProcessor (Class)
        C.17.3  GenericDialog (Class)
    C.18  Plugins
        C.18.1  PlugIn(Interface)
        C.18.2  PlugInFilter(Interface)
        C.18.3  Executing Plugins
    C.19  Window Management
        C.19.1  WindowManager (Class)
    C.20  Additional Functions
        C.20.1  ImagePlus (Class)
        C.20.2  IJ (Class)
D  Source Code
    D.1  Harris Corner Detector
        D.1.1  File Corner.java
        D.1.2  File HarrisCornerDetector.java
        D.1.3  File HarrisCornerPlugin_.java
    D.2  Combined Region Marking and Contour Following
        D.2.1  File ContourTracingPlugin_.java
        D.2.2  File Node.java
        D.2.3  File Contour.java
        D.2.4  File OuterContour.java
        D.2.5  File InnerContour.java
        D.2.6  File ContourSet.java
        D.2.7  File ContourTracer.java
        D.2.8  File ContourOverlay.java