//  This macro is an ImageJ version of the NIH Image macro from
//  High precision boundary fractal analysis for shape characterization*
//  AU: D. Berube, M. Jebrak
//  SO: Computers & Geosciences v. 25, no. 9, pp. 1059-1071

//  It uses the sum of two Euclidean Distance Maps to generate a table 
//  that can be used to calculate the boundary fractal dimension of
//  a binary image (white background pixels). It generates the table
//  by measuring the surface of the Minkowski sausage as determined
//  by the number of gray levels selected by thresholding. An 
//  exponential suite of gray levels is used to optimize the number
//  of points on the graph. To save the table, right-click on the "Log"
//  window and select "Save As".

  requires("1.30p");
  id = getImageID();
  run("Duplicate...", "title=edm1");
  selectWindow("edm1");
  run("Distance Map");
  selectImage(id);
  run("Duplicate...", "title=edm2");
  selectWindow("edm2");
  run("Invert");
  run("Distance Map");
  run("Image Calculator...", "image1=edm1 operation=Add image2=edm2");
  selectWindow("edm1");
  
  run("Clear Results");
  run("Set Measurements...", "area limit decimal=3");
  if (isOpen("Log")) {
    selectWindow("Log");
    run("Close");
  }
  print("Width \tArea");
  lg = 0;
  counter=0;
  
  for (i=1; i<=50; i++) {
    y = round(pow(1.1, i));
    if (lg!=y) {
      lg = y;
      setThreshold(0, lg);
      run("Measure");
      print(2*lg+' \t'+getResult("Area", counter++));
    }
  }
  
  selectWindow("edm1");
  run("Close");
  selectWindow("edm2");
  run("Close");
  selectWindow("Results");
  run("Close");
  selectWindow("Log");

--
ImageJ mailing list: http://imagej.nih.gov/ij/list.html