REVISITED: flattening a layer from z-stacks of thick uneven tissue

Previous Topic Next Topic
 
classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

REVISITED: flattening a layer from z-stacks of thick uneven tissue

Mark Krebs
Hi All,

I'm still trying to "flatten" a layer of cell nuclei from a deconvoluted,
confocal z-stack of a thick uneven tissue.  The problem is not out-of-
plane fluorescence, but rather that the tissue is slightly curved and
bumpy in places, and therefore does not lie parallel to the slices of the
z-stack.  In most slices, nuclei of interest are flanked by nuclei from
other layers.  

https://list.nih.gov/cgi-bin/wa?A1=ind0910&L=imagej#55

I thought it might be possible to define a surface that could be used to
capture pixels defining the layer of nuclei.  Using the PointPicker plugin
on the z-stack, I collected xyz points in the layer of interest (data at
the end of this message).  Now I would like to fit a surface to these
points and use that surface to collect the corresponding layer from the z-
stack.  Once the layer is isolated, z projection can be used to flatten
the layer.

I haven't yet found a solution among the many excellent plugins for
ImageJ.  Any ideas?

I've tried exporting the xyz points to SigmaPlot10 for fitting with a
limited number of 3D curves, but these have been inadequate.  I think I
need a 3D spline curve to fit the data smoothly.  Alternatively, a Voronoi
diagram in 3D may work.  Does the Delaunay Voronoi plugin in Fiji work on
3D data, and can it be used to generate a surface?

http://pacific.mpi-cbg.de/wiki/index.php/Delaunay_Voronoi

Thanks for any help.

Cheers,
Mark

721 926 10
757 960 10
680 946 10
638 928 10
638 881 10
678 846 10
732 828 10
824 912 10
805 958 10
829 993 10
754 1001 10
686 1004 10
564 985 10
1286 641 10
1288 681 10
1321 709 10
1310 842 10
1250 797 10
1272 760 10
1208 648 10
1249 590 10
764 789 10
796 812 10
1312 844 13
1186 940 13
1145 845 13
1030 932 13
981 878 13
969 761 13
990 685 13
916 724 13
846 748 13
798 746 13
660 790 13
593 846 13
556 861 13
549 909 13
510 933 13
444 988 13
652 724 13
1165 577 13
1228 525 13
1213 569 13
1244 597 13
1300 552 13
1244 628 13
1208 649 13
1162 644 13
1153 674 13
1292 681 13
1245 698 13
1194 724 13
1268 764 13
1322 705 13
1044 785 13
1002 810 13
920 842 13
866 860 13
897 784 13
990 684 14
965 762 14
929 750 14
894 785 14
982 882 14
961 962 14
1229 854 14
1142 846 14
1144 892 14
1093 798 14
1097 684 14
1145 610 14
1221 524 14
1190 461 14
1142 542 14
918 648 14
872 666 14
602 770 14
616 732 14
536 769 14
510 797 14
517 842 14
460 872 14
552 909 14
510 933 14
517 972 14
446 982 14
1084 984 14
1210 1000 14
1285 962 14
1312 993 14
1290 924 14
1218 948 14
1169 764 14
1081 725 14
1093 606 14
1300 552 14
1266 520 14
1278 481 14
1290 681 14
1245 702 14
1184 692 14
920 842 14
868 897 14
836 849 14
800 744 14
358 968 16
378 877 16
422 809 16
461 776 16
525 726 16
490 718 16
542 664 16
653 657 16
730 661 16
772 612 16
848 580 16
1149 456 16
1184 466 16
1225 437 16
1209 392 16
1089 504 16
1056 512 16
1020 481 16
1048 550 16
1014 652 16
1094 608 16
1145 610 16
1148 538 16
946 680 16
918 652 16
872 668 16
877 721 16
784 708 16
1337 437 16
433 940 16
390 930 16
301 1008 16
377 1004 16
1012 734 16
304 897 18
420 812 18
494 672 18
656 656 18
566 638 18
754 576 18
948 468 18
918 536 18
898 582 18
848 582 18
822 620 18
1146 453 18
1094 406 18
1137 350 18
1049 361 18
1041 445 18
1281 413 18
1337 436 18
1234 365 18
409 717 20
342 872 20
294 930 20
233 978 20
249 940 20
768 549 20
704 552 20
672 557 20
586 564 20
556 577 20
466 650 20
622 636 20
900 496 20
933 421 20
1013 394 20
1085 364 20
1161 386 20
1282 378 20
1042 441 20
970 534 20
953 356 20
1141 309 20
514 570 20
545 668 20
458 734 20
364 796 20
768 480 22
860 446 22
662 526 22
589 560 22
518 568 22
465 648 22
353 746 22
268 853 22
214 917 22
164 970 22
306 893 22
341 814 22
980 328 22
902 348 22
797 408 22
1138 306 22
1232 329 22
1304 322 22
1265 280 22
766 548 22
833 502 22
1013 393 22
929 416 22
684 604 22
516 525 25
466 600 25
386 652 25
333 673 25
360 749 25
334 817 25
286 809 25
266 853 25
224 860 25
244 942 25
161 974 25
594 505 25
681 468 25
748 410 25
820 369 25
1126 245 25
1078 236 25
1012 265 25
981 321 25
1301 264 25
1230 204 25
1202 230 25
892 289 25
614 457 25
324 725 25
260 777 25
172 932 25
856 274 27
800 336 27
721 380 27
656 446 27
581 433 27
545 501 27
390 612 27
321 722 27
326 669 27
261 777 27
172 928 27
318 604 31
249 698 31
138 797 31
589 400 31
496 452 31
952 206 31
1037 153 31
1169 130 31
1236 120 31
849 274 31
437 482 31
422 546 31
278 732 31
90 953 31
56 949 31
34 981 31
190 656 36
232 632 36
281 574 36
364 481 36
101 788 36
120 710 36
73 849 36
13 898 36
634 337 36
577 333 36
834 224 36
969 106 36
1058 77 36
1138 57 36
1260 94 36
1334 78 36
1330 34 36
865 188 36
761 237 36
198 562 41
153 638 41
82 742 41
801 140 41
878 72 41
958 57 41
553 285 41
517 286 41
493 330 41
392 392 41
328 457 41
702 201 41
729 149 41
1089 12 41
1238 21 41
265 510 41
32 808 41
436 318 44
398 341 44
342 409 44
277 473 44
438 282 44
549 220 44
664 164 44
730 148 44
789 90 44
872 74 44
994 28 44
1090 10 44
156 588 44
112 662 45
210 530 45
317 388 45
436 324 45
560 217 45
26 704 45
698 168 45
722 105 45
829 61 45
908 46 45
993 30 45
793 140 45
486 252 45
244 442 48
118 518 48
118 577 48
73 610 48
646 137 50
714 102 50
821 17 50
313 390 50
205 453 50
114 574 50
76 608 50
505 222 50
438 266 50
412 254 50
356 278 50
349 322 50
261 402 50
240 442 50
133 504 50
21 704 50
270 332 52
413 249 52
581 152 52
741 36 52
773 6 52
113 530 52
40 577 52
69 614 52
258 404 52
186 492 52
210 373 56
269 333 56
324 252 56
409 217 56
474 170 56
432 178 56
540 126 56
574 149 56
654 68 56
685 34 56
133 502 56
56 540 56
358 281 56
209 370 59
133 429 59
114 462 59
52 536 59
353 208 59
330 252 59
280 261 59
254 300 59
216 304 59
405 144 59
501 130 59
598 96 59
592 53 59
561 98 59
682 32 59
214 302 65
404 144 65
346 176 65
556 70 65
590 52 65
517 60 65
480 94 65
440 93 65
281 261 65
257 296 65
153 349 65
124 402 65
36 497 65
65 466 65
370 98 71
346 125 71
228 218 71
193 242 71
190 284 71
148 297 71
133 326 71
65 366 71
53 430 71
518 12 71
212 178 78
169 228 78
93 298 78
20 369 78
169 190 78
326 66 78
360 68 78
378 34 78
114 202 87
145 136 87
213 92 87
322 34 87
18 302 87
72 253 87
169 102 94
94 132 94
69 164 94
232 54 94
176 30 103
122 64 103
157 64 103
85 92 103
26 165 103
216 20 103
96 10 118
41 34 118
30 65 118